Knowledge Discovery in Database
Data Mining (minería de datos) es también conocida como Knowledge Discovery in database (KDD). Es comúnmente definida como el proceso para descubrir patrones útiles o conocimientos a partir de fuentes de datos tales como Bases de Datos, textos, imágenes, la web, etc. Los patrones deben ser válidos, potencialmente útiles y entendibles. La minería de datos es un campo multidisciplinar que incluye: aprendizaje automático, estadísticas, sistemas de base de datos, inteligencia artificial, Information Retrieval, visualización de la información, … El objetivo general del proceso de minería de datos consiste en extraer información de un conjunto de datos y transformarla en una estructura comprensible para su uso posterior. Existen muchas técnica dentro de data mining. Existen muchas tareas de data mining. Algunos de los más comunes consisten en el aprendizaje supervisado, aprendizaje no supervisado, minería de asociación de reglas y minería de secuencia (1).
En resumen, la minería de datos es el conjunto de técnicas y tecnologías que permiten explorar grandes bases de datos, de manera automática o semiautomática, con el objetivo de encontrar patrones repetitivos, tendencias o reglas que expliquen el comportamiento de los datos en un determinado contexto.
10 VENTAJAS DEL USO DE MINERÍA DE DATOS
Sin embargo, también existen pequeños inconvenientes en el uso de técnicas de minería de datos, tales como:
¿Quieres saber más sobre Data Mining o Minería Web?
Te recomendamos que eches un vistazo a estas dos publicaciones en nuestro blog:
O también, puedes leer este libro, como parte de la bibliografía consultada para este post: (1) LIU, BING (2007): WEB DATA MINING Exploring Hyperlinks, contents and usage data. Berlín: Ed. Springer Science & Business Media.